We can fix one of the points say a and get all the four vectors that form the square. There are 6 ways to form these vectors given the starting point.

Now, given two vectors AB and BC, we need to check if |AB|=|BC| and AB.BC = 0. Since cos 90 is 0, the dot products will be zero if they are at right angles. We need to repeat this for all 4 vectors of the square and all 6 squares until one of the combinations is true.

I could have generated the 6 combinations as an improvement on the current code.

```
public class Solution {
public bool ValidSquare(int[] a, int[] b, int[] c, int[] d) {
bool valid = IsValidSquare(a, b, c, d) ||
IsValidSquare(a, b, d, c) ||
IsValidSquare(a, c, b, d) ||
IsValidSquare(a, c, d, b) ||
IsValidSquare(a, d, b, c) ||
IsValidSquare(a, d, c, b);
return valid;
}
public bool IsValidSquare(int[] a, int[] b, int[] c, int[] d)
{
// Now consider the points in order.
int[] AB = new int[] {b[0]-a[0], b[1]-a[1]};
int[] BC = new int[] {c[0]-b[0], c[1]-b[1]};
int[] CD = new int[] {d[0]-c[0], d[1]-c[1]};
int[] DA = new int[] {a[0]-d[0], a[1]-d[1]};
int m1 = GetSqMagnitude(AB);
int m2 = GetSqMagnitude(BC);
int m3 = GetSqMagnitude(CD);
int m4 = GetSqMagnitude(DA);
// If one of the magnitudes is zero, that means both points on one of the vectors are the same.
if (m1 == 0 || m2 == 0 || m3 == 0 || m4 == 0)
{
return false;
}
if (m1 == m2 && m2 == m3 && m3 == m4 && m4 == m1)
{
if (IsRightAngle(AB, BC) && IsRightAngle(BC, CD) && IsRightAngle(CD, DA))
{
return true;
}
}
return false;
}
private int GetSqMagnitude(int[] v)
{
return v[0]*v[0] + v[1]*v[1];
}
private bool IsRightAngle(int[] v1, int[] v2)
{
int dot = (v1[0] * v2[0] + v1[1] * v2[1]);
return (dot == 0);
}
}
```