# 2 recursive and 1 iterative easy-understand Python solutions

• An easy-understand iterative solution, checking the symmetry by each layer, top down.

``````def isSymmetric(self, root):
now = []
if root:
now.append(root)
while now:
vals = []
for i in now:
if i:
vals.append(i.val)
else:
vals.append(None)
if list(reversed(vals)) != vals:
return False
else:
now = [j for i in now if i for j in (i.left, i.right)]
return True
``````

Another simple recursive method, checking whether the original tree = reversed tree with a tuple trick.

``````def isSymmetric(self, root):
def tuple_tree(root):
return root and (root.val, tuple_tree(root.left), tuple_tree(root.right))

def reverse_tree(root):
if root:
root.right, root.left = reverse_tree(root.left), reverse_tree(root.right)
return root

return tuple_tree(root) == tuple_tree(reverse_tree(root))
``````

My favorite recursive solution, quite clean and efficient.

``````def isSymmetric(self, root):
def sym_tree(L,R):
if L and R:
return L.val == R.val and sym_tree(L.left, R.right) and sym_tree(L.right, R.left)
else:
return L == R
return sym_tree(root, root)``````

• @gene5 Seems excellent. Could you please help me understand the statement [j for i in now if i for j in (i.left, i.right)]? Thanks in advance.

``````        temp = []