```
/*n=numRows
Δ=2n-2 1 2n-1 4n-3
Δ= 2 2n-2 2n 4n-4 4n-2
Δ= 3 2n-3 2n+1 4n-5 .
Δ= . . . . .
Δ= . n+2 . 3n .
Δ= n-1 n+1 3n-3 3n-1 5n-5
Δ=2n-2 n 3n-2 5n-4
*/
```

that's the zigzag pattern the question asked!

Be careful with nR=1 && nR=2

my 16ms code in c++:

```
class Solution {
public:
string convert(string s, int numRows) {
string result="";
if(numRows==1)
return s;
int step1,step2;
int len=s.size();
for(int i=0;i<numRows;++i){
step1=(numRows-i-1)*2;
step2=(i)*2;
int pos=i;
if(pos<len)
result+=s.at(pos);
while(1){
pos+=step1;
if(pos>=len)
break;
if(step1)
result+=s.at(pos);
pos+=step2;
if(pos>=len)
break;
if(step2)
result+=s.at(pos);
}
}
return result;
}
};
```